Optimization Algorithms for Distributed Machine Learning
- Format
- E-bog, ePub
- Engelsk
- Indgår i serie
Normalpris
Medlemspris
Beskrivelse
This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
Detaljer
- SprogEngelsk
- Udgivelsesdato25-11-2022
- ISBN139783031190674
- Forlag Springer International Publishing
- FormatePub
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Programmering / softwareudvikling
- Algoritmer og datastrukturer
- Optimization Algorithms for Distributed Machine Learning
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Regning og matematisk analyse
- Numerisk analyse
- Optimization Algorithms for Distributed Machine Learning
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Machine learning
- Optimization Algorithms for Distributed Machine Learning
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Matematisk datateori
- Optimization Algorithms for Distributed Machine Learning
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Sandsynlighedsregning og statistik
- Optimization Algorithms for Distributed Machine Learning