Optimization Algorithms for Distributed Machine Learning
- Format
- Bog, paperback
- Engelsk
- Indgår i serie
Normalpris
Medlemspris
- Du sparer kr. 25,00
- Fri fragt
-
Leveringstid: 7-9 Hverdage (Sendes fra fjernlager) Forventet levering: 27-02-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.
Detaljer
- SprogEngelsk
- Sidetal127
- Udgivelsesdato26-11-2023
- ISBN139783031190698
- Forlag Springer International Publishing AG
- MålgruppeFrom age 0
- FormatPaperback
Størrelse og vægt
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Sandsynlighedsregning og statistik
- Optimization Algorithms for Distributed Machine Learning
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Anvendt matematik
- Stokastik
- Optimization Algorithms for Distributed Machine Learning
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Programmering / softwareudvikling
- Algoritmer og datastrukturer
- Optimization Algorithms for Distributed Machine Learning