Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Optimization Algorithms for Distributed Machine Learning

  • Format
  • Bog, paperback
  • Engelsk

Normalpris

kr. 374,95

Medlemspris

kr. 349,95
  • Du sparer kr. 25,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

This book discusses state-of-the-art stochastic optimization algorithms for distributed machine learning and analyzes their convergence speed. The book first introduces stochastic gradient descent (SGD) and its distributed version, synchronous SGD, where the task of computing gradients is divided across several worker nodes. The author discusses several algorithms that improve the scalability and communication efficiency of synchronous SGD, such as asynchronous SGD, local-update SGD, quantized and sparsified SGD, and decentralized SGD. For each of these algorithms, the book analyzes its error versus iterations convergence, and the runtime spent per iteration. The author shows that each of these strategies to reduce communication or synchronization delays encounters a fundamental trade-off between error and runtime.

Læs hele beskrivelsen
Detaljer
Størrelse og vægt
  • Vægt255 g
  • Dybde0,9 cm
  • coffee cup img
    10 cm
    book img
    16,8 cm
    24 cm

    Anmeldelser

    Vær den første!

    Log ind for at skrive en anmeldelse.

    Findes i disse kategorier...