Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Variational Autoencoders

Bog
  • Format
  • Bog, paperback
  • Engelsk
  • 270 sider

Normalpris

kr. 329,95

Medlemspris

kr. 299,95
  • Du sparer kr. 30,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

A Transformative Exploration of Variational Autoencoders and Advanced Generative Modeling

Refine your mastery of modern machine learning with a comprehensive framework that demystifies Variational Autoencoders (VAEs). From fundamental architectures to inventive methods spanning convolutional networks, disentangled representations, and multimodal learning, this resource provides step-by-step Python implementations for 33 cutting-edge VAE algorithms. Designed for data scientists, researchers, and advanced practitioners, it offers in-depth explanations and best practices on how to design, debug, and optimize your own generative models.

Each practical chapter showcases a unique application through clear, annotated Python code. You will learn to seamlessly integrate theoretical concepts into robust pipelines-capable of handling images, text, time series, 3D data, and beyond.



Key BenefitsHigh-Impact Techniques: Implement specialized VAEs such as Beta-VAE, FactorVAE, Hierarchical VAE, and VQ-VAE for diverse research and industry use cases.Real-World Examples: Acquire the know-how to adapt model architectures for noise reduction, anomaly detection, style transfer, text generation, and more.Performance Insights: Fine-tune hyperparameters and accelerate training processes with practical tips that spare you from common pitfalls.

Specific Algorithms CoveredBasic Variational Autoencoder for MNIST - Ideal as a starting point for newcomers, with a clear walkthrough of the reparameterization trick.Conditional VAE for Image Synthesis - Harness class labels to guide the generation of high-fidelity, label-specific images.VAE-GAN for High-Fidelity Image Synthesis - Merge the synergy of VAEs and GANs to produce exceptionally realistic outputs.VAE for Time Series Anomaly Detection - Identify abnormalities in sequential data by monitoring reconstruction errors.Hierarchical VAE for Complex Distributions - Stack multiple latent layers to capture multi-scale features and deeper abstractions.VQ-VAE for Discrete Latent Representations - Reduce reconstruction error in tasks involving speech or repeated patterns by quantizing the hidden space.Graph VAE for Molecule and Network Generation - Create novel molecular graphs or network structures by leveraging Graph Neural Networks within the VAE framework. Elevate your career in deep learning, automation, and research with a resource that thoroughly unpacks the latest frontiers of VAE technology-backed by extensive, customizable Python code.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal270
  • Udgivelsesdato19-01-2025
  • ISBN139798307529843
  • Forlag Independently Published
  • MålgruppeFrom age 0
  • FormatPaperback
  • Udgave0
Størrelse og vægt
  • Vægt362 g
  • Dybde1,4 cm
  • coffee cup img
    10 cm
    book img
    15,2 cm
    22,8 cm

    Anmeldelser

    Vær den første!

    Log ind for at skrive en anmeldelse.

    Findes i disse kategorier...