Support Vector Machines for Pattern Classification
- Format
- E-bog, PDF
- Engelsk
- Indgår i serie
Normalpris
Medlemspris
Beskrivelse
A guide on the use of SVMs in pattern classification, including a rigorous performance comparison of classifiers and regressors. The book presents architectures for multiclass classification and function approximation problems, as well as evaluation criteria for classifiers and regressors. Features: Clarifies the characteristics of two-class SVMs; Discusses kernel methods for improving the generalization ability of neural networks and fuzzy systems; Contains ample illustrations and examples; Includes performance evaluation using publicly available data sets; Examines Mahalanobis kernels, empirical feature space, and the effect of model selection by cross-validation; Covers sparse SVMs, learning using privileged information, semi-supervised learning, multiple classifier systems, and multiple kernel learning; Explores incremental training based batch training and active-set training methods, and decomposition techniques for linear programming SVMs; Discusses variable selection for support vector regressors.
Detaljer
- SprogEngelsk
- Udgivelsesdato23-07-2010
- ISBN139781849960984
- Forlag Springer London
- FormatPDF
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Naturligt sprog og maskinoversættelse
- Support Vector Machines for Pattern Classification
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Grafisk IT og digitale medier
- Desktop publishing
- Support Vector Machines for Pattern Classification
- Fagbøger
- Andre fagbøger
- Reference, information og tværfaglige emner
- Forskning og information: generelt
- Informationsteori
- Kybernetik og systemteori
- Support Vector Machines for Pattern Classification