Source Separation and Machine Learning
- Format
- Bog, paperback
- Engelsk
Normalpris
Medlemspris
- Du sparer kr. 40,00
- Fri fragt
-
Leveringstid: 2-3 Uger (Sendes fra fjernlager) Forventet levering: 12-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
Source Separation and Machine Learning presents the fundamentals in adaptive learning algorithms for Blind Source Separation (BSS) and emphasizes the importance of machine learning perspectives. It illustrates how BSS problems are tackled through adaptive learning algorithms and model-based approaches using the latest information on mixture signals to build a BSS model that is seen as a statistical model for a whole system. Looking at different models, including independent component analysis (ICA), nonnegative matrix factorization (NMF), nonnegative tensor factorization (NTF), and deep neural network (DNN), the book addresses how they have evolved to deal with multichannel and single-channel source separation.
Detaljer
- SprogEngelsk
- Sidetal384
- Udgivelsesdato23-10-2018
- ISBN139780128177969
- Forlag Academic Press Inc
- FormatPaperback
Størrelse og vægt
10 cm
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Signalbehandling
- Source Separation and Machine Learning
- Fagbøger
- Andre fagbøger
- Teknologi, ingeniørvidenskab og landbrug
- Elektronik og kommunikationsteknik
- Elektroteknik
- Source Separation and Machine Learning