Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces
- Format
- Bog, paperback
- Engelsk
- Indgår i serie
-
- MPSSIAM Series on Optimization
- , Mossiam Series on Optimization 11
- og Mos-siam Series on Optimization
Normalpris
Medlemspris
- Du sparer kr. 50,00
- Fri fragt
-
Leveringstid: 8-11 Hverdage (Sendes fra fjernlager) Forventet levering: 06-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
Semismooth Newton methods are a modern class of remarkably powerful and versatile algorithms for solving constrained optimization problems with partial differential equations (PDEs), variational inequalities and related problems. This book provides a comprehensive presentation of these methods in function spaces, choosing a balance between thoroughly developed theory and numerical applications. Although largely self-contained, the book also covers recent developments such as state-constrained problems and offers new material on topics such as improved mesh independence results. The theory and methods are applied to a range of practically important problems, including: • optimal control of nonlinear elliptic differential equations • obstacle problems • flow control of instationary Navier–Stokes fluids In addition, the author covers adjoint-based derivative computation and the efficient solution of Newton systems by multigrid and preconditioned iterative methods.
Detaljer
- SprogEngelsk
- Sidetal320
- Udgivelsesdato28-07-2011
- ISBN139781611970685
- Forlag Society For Industrial & Applied Mathematics,u.S.
- FormatPaperback
Størrelse og vægt
10 cm
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Anvendt matematik
- Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Regning og matematisk analyse
- Numerisk analyse
- Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces