- Format
- Bog, hardback
- Engelsk
- Indgår i serie
Normalpris
Medlemspris
- Du sparer kr. 45,00
- Fri fragt
-
Leveringstid: 2-3 uger (Sendes fra fjernlager) Forventet levering: 06-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
This book introduces the concepts and models of robust representation learning, and provides a set of solutions to deal with real-world data analytics tasks, such as clustering, classification, time series modeling, outlier detection, collaborative filtering, community detection, etc. Three types of robust feature representations are developed, which extend the understanding of graph, subspace, and dictionary.Leveraging the theory of low-rank and sparse modeling, the authors develop robust feature representations under various learning paradigms, including unsupervised learning, supervised learning, semi-supervised learning, multi-view learning, transfer learning, and deep learning. Robust Representations for Data Analytics covers a wide range of applications in the research fields of big data, human-centered computing, pattern recognition, digital marketing, web mining, and computer vision.
Detaljer
- SprogEngelsk
- Sidetal224
- Udgivelsesdato29-08-2017
- ISBN139783319601755
- Forlag Springer International Publishing AG
- FormatHardback
Størrelse og vægt
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Grafisk IT og digitale medier
- Digital billedbehandling
- Robust Representation for Data Analytics
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Databaser
- Data mining
- Robust Representation for Data Analytics
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Ekspertsystemer og vidensbaserede systemer
- Robust Representation for Data Analytics
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Mønstergenkendelse
- Robust Representation for Data Analytics