Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Robust Methods for Data Reduction

  • Format
  • Bog, hardback
  • Engelsk

Normalpris

kr. 899,95

Medlemspris

kr. 854,95
  • Du sparer kr. 45,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

Robust Methods for Data Reduction gives a non-technical overview of robust data reduction techniques, encouraging the use of these important and useful methods in practical applications. The main areas covered include principal components analysis, sparse principal component analysis, canonical correlation analysis, factor analysis, clustering, double clustering, and discriminant analysis.

The first part of the book illustrates how dimension reduction techniques synthesize available information by reducing the dimensionality of the data. The second part focuses on cluster and discriminant analysis. The authors explain how to perform sample reduction by finding groups in the data.

Despite considerable theoretical achievements, robust methods are not often used in practice. This book fills the gap between theoretical robust techniques and the analysis of real data sets in the area of data reduction. Using real examples, the authors show how to implement the procedures in R. The code and data for the examples are available on the book’s CRC Press web page.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal298
  • Udgivelsesdato16-04-2015
  • ISBN139781466590625
  • Forlag CRC Press Inc
  • FormatHardback
Størrelse og vægt
  • Vægt566 g
  • coffee cup img
    10 cm
    book img
    15,6 cm
    23,4 cm

    Anmeldelser

    Vær den første!

    Log ind for at skrive en anmeldelse.

    Findes i disse kategorier...