Random Matrix Methods for Machine Learning
- Format
- Bog, hardback
- Engelsk
Normalpris
Medlemspris
- Du sparer kr. 45,00
- Fri fragt
-
Leveringstid: 7-12 Hverdage (Sendes fra fjernlager) Forventet levering: 04-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website.
Detaljer
- SprogEngelsk
- Sidetal408
- Udgivelsesdato21-07-2022
- ISBN139781009123235
- Forlag Cambridge University Press
- FormatHardback
Størrelse og vægt
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Signalbehandling
- Random Matrix Methods for Machine Learning
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Computer vision
- Random Matrix Methods for Machine Learning
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Machine learning
- Random Matrix Methods for Machine Learning