Quantum Computing and Quantum Machine Learning for Engineers and Developers
- Format
- E-bog, ePub
- Engelsk
- Indgår i serie
Normalpris
Medlemspris
Beskrivelse
This book guides readers from the foundations of quantum mechanics through advanced quantum algorithms (such as Shor’s and Grover’s) and state-of-the-art machine learning methods. By illustrating how these concepts apply to everyday engineering challenges, ranging from complex optimization and cryptography to high-fidelity simulations, the authors equip readers with the tools they need to develop and deploy quantum-based solutions. Incorporating practical case studies, industry-standard platforms, and tested pedagogical approaches, this resource speaks to both academic researchers and industry professionals, enabling them to seamlessly integrate quantum technologies into their projects and workflow
Detaljer
- SprogEngelsk
- Udgivelsesdato30-09-2025
- ISBN139783031982453
- Forlag Springer Nature Switzerland
- FormatePub
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Teknologi, ingeniørvidenskab og landbrug
- Elektronik og kommunikationsteknik
- Elektroteknik
- Elektronik: kredse og komponenter
- Quantum Computing and Quantum Machine Learning for Engineers and Developers
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Programmering / softwareudvikling
- Algoritmer og datastrukturer
- Quantum Computing and Quantum Machine Learning for Engineers and Developers
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Machine learning
- Quantum Computing and Quantum Machine Learning for Engineers and Developers
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Matematisk datateori
- Quantum Computing and Quantum Machine Learning for Engineers and Developers
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Fysik
- Kvantefysik (kvantemekanik og kvantefeltteori)
- Quantum Computing and Quantum Machine Learning for Engineers and Developers