Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Probabilistic Machine Learning

- Advanced Topics

  • Format
  • E-bog, PDF
  • Engelsk
  • 1360 sider
Er ikke web-tilgængelig
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Normalpris

kr. 3.549,95

Medlemspris

kr. 3.484,95
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

An advanced book for researchers and graduate students working in machine learning and statistics who want to learn about deep learning, Bayesian inference, generative models, and decision making under uncertainty.An advanced counterpart to Probabilistic Machine Learning: An Introduction, this high-level textbook provides researchers and graduate students detailed coverage of cutting-edge topics in machine learning, including deep generative modeling, graphical models, Bayesian inference, reinforcement learning, and causality. This volume puts deep learning into a larger statistical context and unifies approaches based on deep learning with ones based on probabilistic modeling and inference. With contributions from top scientists and domain experts from places such as Google, DeepMind, Amazon, Purdue University, NYU, and the University of Washington, this rigorous book is essential to understanding the vital issues in machine learning.* Covers generation of high dimensional outputs, such as images, text, and graphs * Discusses methods for discovering insights about data, based on latent variable models * Considers training and testing under different distributions* Explores how to use probabilistic models and inference for causal inference and decision making* Features online Python code accompaniment

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal1360
  • Udgivelsesdato15-08-2023
  • ISBN139780262375993
  • Forlag MIT Press
  • FormatPDF

Anmeldelser

Vær den første!

Log ind for at skrive en anmeldelse.

Findes i disse kategorier...