- Format
- E-bog, ePub
- Engelsk
- Indgår i serie
Normalpris
Medlemspris
Beskrivelse
This book provides a thorough overview of the evolution of privacy-preserving machine learning schemes over the last ten years, after discussing the importance of privacy-preserving techniques. In response to the diversity of Internet services, data services based on machine learning are now available for various applications, including risk assessment and image recognition. In light of open access to datasets and not fully trusted environments, machine learning-based applications face enormous security and privacy risks. In turn, it presents studies conducted to address privacy issues and a series of proposed solutions for ensuring privacy protection in machine learning tasks involving multiple parties. In closing, the book reviews state-of-the-art privacy-preserving techniques and examines the security threats they face.
Detaljer
- SprogEngelsk
- Udgivelsesdato14-03-2022
- ISBN139789811691393
- Forlag Springer Singapore
- FormatePub
Anmeldelser
Vær den første!
Forfattere
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Machine learning
- Privacy-Preserving Machine Learning
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Datakommunikation og computernetværk
- Netværkssikkerhed
- Privacy-Preserving Machine Learning