PARTIAL DIFFERENTIAL EQUATIONS IN SOBOLEV & ANALYTIC SPACES
- Boukarou Aissa: PARTIAL DIFFERENTIAL EQUATIONS IN SOBOLEV &
- Format
- Bog, hardback
- Engelsk
- 560 sider
Normalpris
Medlemspris
- Du sparer kr. 60,00
- Fri fragt
-
Leveringstid: 7-12 Hverdage (Sendes fra fjernlager) Forventet levering: 10-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
Partial Differential Equations (PDEs) are fundamental in fields such as physics and engineering, underpinning our understanding of sound, heat, diffusion, electrostatics, electrodynamics, thermodynamics, fluid dynamics, elasticity, general relativity, and quantum mechanics. They also arise in areas like differential geometry and the calculus of variations.
This book focuses on recent investigations of PDEs in Sobolev and analytic spaces. It consists of twelve chapters, starting with foundational definitions and results on linear, metric, normed, and Banach spaces, which are essential for introducing weak solutions to PDEs. Subsequent chapters cover topics such as Lebesgue integration, Lp spaces, distributions, Fourier transforms, Sobolev and Bourgain spaces, and various types of KdV equations. Advanced topics include higher order dispersive equations, local and global well-posedness, and specific classes of Kadomtsev-Petviashvili equations.
This book is intended for specialists like mathematicians, physicists, engineers, and biologists. It can serve as a graduate-level textbook and a reference for multiple disciplines.
Detaljer
- SprogEngelsk
- Sidetal560
- Udgivelsesdato07-02-2025
- ISBN139789811298509
- Forlag World Scientific
- FormatHardback
- Udgave0
Størrelse og vægt
10 cm
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Anvendt matematik
- PARTIAL DIFFERENTIAL EQUATIONS IN SOBOLEV & ANALYTIC SPACES
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Regning og matematisk analyse
- Differentialregning og differentialligninger
- PARTIAL DIFFERENTIAL EQUATIONS IN SOBOLEV & ANALYTIC SPACES