Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Non-Divergence Equations Structured on Hoermander Vector Fields

- Heat Kernels and Harnack Inequalities

  • Format
  • E-bog, PDF
  • 123 sider
Er ikke web-tilgængelig
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Normalpris

kr. 1.034,95

Medlemspris

kr. 969,95
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

In this work the authors deal with linear second order partial differential operators of the following type $ H=\partial_{t}-L=\partial_{t}-\sum_{i,j=1}^{q}a_{ij}(t,x) X_{i}X_{j}-\sum_{k=1}^{q}a_{k}(t,x)X_{k}-a_{0}(t,x)$ where $X_{1},X_{2},\ldots,X_{q}$ is a system of real Hoermander's vector fields in some bounded domain $\Omega\subseteq\mathbb{R}^{n}$, $A=\left\{ a_{ij}\left( t,x\right) \right\} _{i,j=1}^{q}$ is a real symmetric uniformly positive definite matrix such that $\lambda^{-1}\vert\xi\vert^{2}\leq\sum_{i,j=1}^{q}a_{ij}(t,x) \xi_{i}\xi_{j}\leq\lambda\vert\xi\vert^{2}\forall\xi\in\mathbb{R}^{q}, x \in\Omega,t\in(T_{1},T_{2})$ for a suitable constant $\lambda>0$ a for some real numbers $T_{1} < T_{2}$.

Læs hele beskrivelsen
Detaljer

Anmeldelser

Vær den første!

Log ind for at skrive en anmeldelse.

Findes i disse kategorier...