Non-Divergence Equations Structured on Hoermander Vector Fields
- Heat Kernels and Harnack Inequalities
- Format
- E-bog, PDF
- 123 sider
Normalpris
Medlemspris
Beskrivelse
In this work the authors deal with linear second order partial differential operators of the following type $ H=\partial_{t}-L=\partial_{t}-\sum_{i,j=1}^{q}a_{ij}(t,x) X_{i}X_{j}-\sum_{k=1}^{q}a_{k}(t,x)X_{k}-a_{0}(t,x)$ where $X_{1},X_{2},\ldots,X_{q}$ is a system of real Hoermander's vector fields in some bounded domain $\Omega\subseteq\mathbb{R}^{n}$, $A=\left\{ a_{ij}\left( t,x\right) \right\} _{i,j=1}^{q}$ is a real symmetric uniformly positive definite matrix such that $\lambda^{-1}\vert\xi\vert^{2}\leq\sum_{i,j=1}^{q}a_{ij}(t,x) \xi_{i}\xi_{j}\leq\lambda\vert\xi\vert^{2}\forall\xi\in\mathbb{R}^{q}, x \in\Omega,t\in(T_{1},T_{2})$ for a suitable constant $\lambda>0$ a for some real numbers $T_{1} < T_{2}$.
Detaljer
- Sidetal123
- Udgivelsesdato01-01-1900
- ISBN139781470405755
- Forlag American Mathematical Society
- FormatPDF
Anmeldelser
Vær den første!