Multi-aspect Learning : Methods and Applications
- Format
- Bog, hæftet
- Engelsk
- 194 sider
Normalpris
Medlemspris
- Du sparer kr. 55,00
- Fri fragt
-
Leveringstid: 7-9 Hverdage (Sendes fra fjernlager) Forventet levering: 27-02-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
This book offers a detailed and comprehensive analysis of multi-aspect data learning, focusing especially on representation learning approaches for unsupervised machine learning. It covers state-of-the-art representation learning techniques for clustering and their applications in various domains. This is the first book to systematically review multi-aspect data learning, incorporating a range of concepts and applications. Additionally, it is the first to comprehensively investigate manifold learning for dimensionality reduction in multi-view data learning. The book presents the latest advances in matrix factorization, subspace clustering, spectral clustering and deep learning methods, with a particular emphasis on the challenges and characteristics of multi-aspect data. Each chapter includes a thorough discussion of state-of-the-art of multi-aspect data learning methods and important research gaps. The book provides readers with the necessary foundational knowledge to apply these methods to new domains and applications, as well as inspire new research in this emerging field.
Detaljer
- SprogEngelsk
- Sidetal194
- Udgivelsesdato28-07-2023
- ISBN139783031335617
- Forlag Springer
- MålgruppeFrom age 0
- FormatHæftet
Størrelse og vægt
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Databaser
- Datafangst og dataanalyse
- Multi-aspect Learning : Methods and Applications