Modern Dimension Reduction
- Format
- Bog, paperback
- Engelsk
Normalpris
Medlemspris
- Du sparer kr. 15,00
- Fri fragt
-
Leveringstid: 7-13 Hverdage (Sendes fra fjernlager) Forventet levering: 06-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
Data are not only ubiquitous in society, but are increasingly complex both in size and dimensionality. Dimension reduction offers researchers and scholars the ability to make such complex, high dimensional data spaces simpler and more manageable. This Element offers readers a suite of modern unsupervised dimension reduction techniques along with hundreds of lines of R code, to efficiently represent the original high dimensional data space in a simplified, lower dimensional subspace. Launching from the earliest dimension reduction technique principal components analysis and using real social science data, I introduce and walk readers through application of the following techniques: locally linear embedding, t-distributed stochastic neighbor embedding (t-SNE), uniform manifold approximation and projection, self-organizing maps, and deep autoencoders. The result is a well-stocked toolbox of unsupervised algorithms for tackling the complexities of high dimensional data so common in modern society. All code is publicly accessible on Github.
Detaljer
- SprogEngelsk
- Sidetal75
- Udgivelsesdato05-08-2021
- ISBN139781108986892
- Forlag Cambridge University Press
- FormatPaperback
Størrelse og vægt
10 cm
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Databaser
- Databasedesign og databaseteori
- Modern Dimension Reduction
- Fagbøger
- Andre fagbøger
- Samfund og samfundsvidenskab
- Politik og regering
- Politisk forskning og politisk teori
- Modern Dimension Reduction
- Fagbøger
- Andre fagbøger
- Reference, information og tværfaglige emner
- Forskning og information: generelt
- Forskningsmetoder: generelt
- Modern Dimension Reduction
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Databaser
- Datafangst og dataanalyse
- Modern Dimension Reduction