Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R
- Order-Restricted Analysis of Microarray Data
Normalpris
Medlemspris
- Du sparer kr. 25,00
- Fri fragt
-
Leveringstid: 2-3 uger (Sendes fra fjernlager) Forventet levering: 06-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
This book focuses on the analysis of dose-response microarray data in pharmaceutical settings, the goal being to cover this important topic for early drug development experiments and to provide user-friendly R packages that can be used to analyze this data. It is intended for biostatisticians and bioinformaticians in the pharmaceutical industry, biologists, and biostatistics/bioinformatics graduate students.
Part I of the book is an introduction, in which we discuss the dose-response setting and the problem of estimating normal means under order restrictions. In particular, we discuss the pooled-adjacent-violator (PAV) algorithm and isotonic regression, as well as inference under order restrictions and non-linear parametric models, which are used in the second part of the book.
Part II is the core of the book, in which we focus on the analysis of dose-response microarray data. Methodological topics discussed include:
• Multiplicity adjustment
• Test statistics and procedures for the analysis of dose-response microarray data
• Resampling-based inference and use of the SAM method for small-variance genes in the data
• Identification and classification of dose-response curve shapes
• Clustering of order-restricted (but not necessarily monotone) dose-response profiles
• Gene set analysis to facilitate the interpretation of microarray results
• Hierarchical Bayesian models and Bayesian variable selection
• Non-linear models for dose-response microarray data
• Multiple contrast tests
• Multiple confidence intervals for selected parameters adjusted for the false coverage-statement rate
All methodological issues in the book are illustrated using real-world examples of dose-response microarray datasets from early drug development experiments.
Detaljer
- SprogEngelsk
- Sidetal282
- Udgivelsesdato26-08-2012
- ISBN139783642240065
- Forlag Springer-verlag Berlin And Heidelberg Gmbh & Co. K
- FormatPaperback
Størrelse og vægt
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Biologi og biovidenskab
- Biovidenskab: generelle emner
- Bioinformatik
- Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Anvendt matematik
- Matematisk modellering
- Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Virksomhedssoftware
- Matematikprogrammer og statistikprogrammer
- Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R
- Fagbøger
- Andre fagbøger
- Lægevidenskab og sygepleje
- Medicinske discipliner
- Farmakologi
- Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R
- Fagbøger
- Andre fagbøger
- Lægevidenskab og sygepleje
- Sygepleje og paramedicinske fag
- Farmaci
- Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Biologi og biovidenskab
- Molekylærbiologi
- Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R
- Fagbøger
- Andre fagbøger
- Lægevidenskab og sygepleje
- Lægevidenskab: generelle emner
- Medicinsk- og sundhedsfaglig informatik
- Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R
- Fagbøger
- Andre fagbøger
- Teknologi, ingeniørvidenskab og landbrug
- Industriel kemi og produktionsteknologi
- Industriel kemi og kemiteknik
- Farmaceutisk kemi og teknologi
- Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Sandsynlighedsregning og statistik
- Modeling Dose-Response Microarray Data in Early Drug Development Experiments Using R