Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Matrix Factorization for Multimedia Clustering

- Models, Techniques, Optimization and Applications

Bog
  • Format
  • Bog, hardback
  • Engelsk
  • 300 sider

Normalpris

kr. 1.394,95

Medlemspris

kr. 1.334,95
  • Du sparer kr. 60,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

Due to the rapid development of the internet of things, mobile communication and social media, more multimedia content (images, texts, videos and audios) is being created from multimedia platforms. To discover the intrinsic structure in unlabeled multimedia big data, it is crucial to partition objects into different groups and downstream tasks for application such as misinformation, epidemiology, user recommendation, and so on. Clustering is a fundamental problem in multimedia information processing.

This co-authored book explores clustering principles through advanced data analysis techniques such as matrix and tensor factorization which are highly relevant for multimedia information processing. Multimedia data may exhibit various forms of noise represented from multiple perspectives, making traditional clustering approaches less effective. The authors consider complex conditions such as noise sensitivity and discuss methods to address these challenges in the context of multimedia data. They examine popular regularization techniques, providing theoretical analyses that demonstrate the relationship between regularization and clustering performance.

The book will serve as a solid advanced reference for researchers, scientists, engineers and advanced students who wish to implement practical tasks through clustering formulations. Additionally, the authors provide a detailed description of convergence theory to enable readers to conduct the corresponding algorithm analyses. They investigate novel regularization techniques, such as self-paced learning, optimal graph learning, and diversity regularization, to uncover the geometric structure of data. These techniques are beneficial for enhancing clustering performance. Furthermore, they demonstrate the efficiency of these regularization techniques through theoretical analyses, practical experiments and applications in real-world datasets.

Læs hele beskrivelsen
Detaljer
Størrelse og vægt
coffee cup img
10 cm
book img
15,5 cm
23,3 cm

Anmeldelser

Vær den første!

Log ind for at skrive en anmeldelse.

Findes i disse kategorier...