- Format
- Bog, paperback
- Engelsk
- 368 sider
Normalpris
Medlemspris
- Du sparer kr. 45,00
- Fri fragt
-
Leveringstid: 7-12 Hverdage (Sendes fra fjernlager) Forventet levering: 03-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
This book contains a fast-paced introduction to data-related tasks in preparation for training models ondatasets. It presents a step-by-step, Python-based code sample that uses the kNN algorithm to manage a model on a dataset.
Chapter One begins with an introduction to datasets and issues that can arise, followed by Chapter Two on outliers and anomaly detection. The next chapter explores ways for handling missing data and invalid data, and Chapter Four demonstrates how to train models with classification algorithms. Chapter 5 introduces visualization toolkits, such as Sweetviz, Skimpy, Matplotlib, and Seaborn, along with some simple Python-based code samples that render charts and graphs. An appendix includes some basics on using awk. Companion files with code, datasets, and figures are available for downloading.
FEATURES:
Covers extensive topics related to cleaning datasets and working with modelsIncludes Python-based code samples and a separate chapter on Matplotlib and SeabornFeatures companion files with source code, datasets, and figures from the book
Detaljer
- SprogEngelsk
- Sidetal368
- Udgivelsesdato15-03-2023
- ISBN139781683929529
- Forlag Mercury Learning and Information
- FormatPaperback
- Udgave1. Auflage
Størrelse og vægt
Anmeldelser
Vær den første!