- Format
- Bog, hardback
- Engelsk
- Indgår i serie
Normalpris
Medlemspris
- Du sparer kr. 50,00
- Fri fragt
-
Leveringstid: 4-7 Hverdage (Sendes fra fjernlager) Forventet levering: 24-02-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
A Proven, Hands-On Approach for Students without a Strong Statistical Foundation
Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area.
Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation.
New to the Second Edition
Two new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of contentRevision of the support vector machine material, including a simple implementation for experimentsNew material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptronAdditional discussions of the Kalman and particle filtersImproved code, including better use of naming conventions in PythonSuitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.
Detaljer
- SprogEngelsk
- Sidetal458
- Udgivelsesdato08-10-2014
- ISBN139781466583283
- Forlag CRC Press Inc
- FormatHardback
Størrelse og vægt
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Sandsynlighedsregning og statistik
- Machine Learning
- Fagbøger
- Andre fagbøger
- Teknologi, ingeniørvidenskab og landbrug
- Elektronik og kommunikationsteknik
- Elektroteknik
- Automatisk styringsteknik og reguleringsteknik
- Machine Learning
- Fagbøger
- Andre fagbøger
- Teknologi, ingeniørvidenskab og landbrug
- Miljøvidenskab, miljøteknik og miljøteknologi
- Machine Learning
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informationsteknologi: generelle emner
- Machine Learning