Machine Learning
- Paradigms and Methods
- Format
- Bog, paperback
- Engelsk
Normalpris
Medlemspris
- Du sparer kr. 30,00
- Fri fragt
-
Leveringstid: 7-12 Hverdage (Sendes fra fjernlager) Forventet levering: 04-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
Having played a central role at the inception of artificial intelligence research, machine learning has recently reemerged as a major area of study at the very core of the subject. Solid theoretical foundations are being constructed. Machine learning methods are being integrated with powerful performance systems, and practical applications; based on established techniques are emerging.Machine Learning unifies the field by bringing together and clearly explaining the major successful paradigms for machine learning: inductive approaches, explanation-based learning, genetic algorithms, and connectionist learning methods. Each paradigm is presented in depth, providing historical perspective but focusing on current research and potential applications.ContributorsJohn R. Anderson, L. B. Booker, John. H. Gennari, Jaime G. Carbonell, Oren Etzioni, Doug Fisher, Yolanda Gil, D. E. Goldberg, Gerald E. Hinton, J. H. Holland, Craig A Knoblock, Daniel. R. Kuokka, Pat Langley, David B. Leake, Steve Minton, Jack Mostow, Roger C. Schank, and Jan M. Zytkow
Detaljer
- SprogEngelsk
- Sidetal400
- Udgivelsesdato23-02-1990
- ISBN139780262530880
- Forlag Mit Press Ltd
- MålgruppeFrom age 18
- FormatPaperback
Størrelse og vægt
Anmeldelser
Vær den første!