Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Machine Learning with PySpark

- With Natural Language Processing and Recommender Systems

  • Format
  • E-bog, ePub
  • Engelsk
Er ikke web-tilgængelig
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Normalpris

kr. 524,95

Medlemspris

kr. 474,95
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

Master the new features in PySpark 3.1 to develop data-driven, intelligent applications. This updated edition covers topics ranging from building scalable machine learning models, to natural language processing, to recommender systems.Machine Learning with PySpark, Second Edition begins with the fundamentals of Apache Spark, including the latest updates to the framework. Next, you will learn the full spectrum of traditional machine learning algorithm implementations, along with natural language processing and recommender systems. You ll gain familiarity with the critical process of selecting machine learning algorithms, data ingestion, and data processing to solve business problems. You ll see a demonstration of how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forests. You ll also learn how to automate the steps using Spark pipelines, followed by unsupervised models such as K-means and hierarchical clustering. A section on Natural Language Processing (NLP) covers text processing, text mining, and embeddings for classification. This new edition also introduces Koalas in Spark and how to automate data workflow using Airflow and PySpark s latest ML library.After completing this book, you will understand how to use PySpark s machine learning library to build and train various machine learning models, along with related components such as data ingestion, processing and visualization to develop data-driven intelligent applicationsWhat you will learn:Build a spectrum of supervised and unsupervised machine learning  algorithmsUse PySpark's machine learning library to implement machine learning and recommender systems Leverage the new features in PySpark s machine learning libraryUnderstand data processing using Koalas in Spark Handle issues around feature engineering, class balance, bias andvariance, and cross validation to build optimally fit modelsWho This Book Is For Data science and machine learning professionals.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Udgivelsesdato08-12-2021
  • ISBN139781484277775
  • Forlag Apress
  • FormatePub

Anmeldelser

Vær den første!

Log ind for at skrive en anmeldelse.

Findes i disse kategorier...