Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Machine Learning Toolbox for Social Scientists

- Applied Predictive Analytics with R

  • Format
  • E-bog, PDF
  • Engelsk
Er ikke web-tilgængelig
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Normalpris

kr. 1.099,95

Medlemspris

kr. 1.034,95
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

Machine Learning Toolbox for Social Scientists covers predictive methods with complementary statistical 'tools' that make it mostly self-contained. The inferential statistics is the traditional framework for most data analytics courses in social science and business fields, especially in Economics and Finance. The new organization that this book offers goes beyond standard machine learning code applications, providing intuitive backgrounds for new predictive methods that social science and business students can follow. The book also adds many other modern statistical tools complementary to predictive methods that cannot be easily found in 'econometrics' textbooks: nonparametric methods, data exploration with predictive models, penalized regressions, model selection with sparsity, dimension reduction methods, nonparametric time-series predictions, graphical network analysis, algorithmic optimization methods, classification with imbalanced data, and many others. This book is targeted at students and researchers who have no advanced statistical background, but instead coming from the tradition of 'inferential statistics'. The modern statistical methods the book provides allows it to be effectively used in teaching in the social science and business fields.Key Features: The book is structured for those who have been trained in a traditional statistics curriculum. There is one long initial section that covers the differences in 'estimation' and 'prediction' for people trained for causal analysis. The book develops a background framework for Machine learning applications from Nonparametric methods. SVM and NN simple enough without too much detail. It's self-sufficient. Nonparametric time-series predictions are new and covered in a separate section. Additional sections are added: Penalized Regressions, Dimension Reduction Methods, and Graphical Methods have been increasing in their popularity in social sciences.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal600
  • Udgivelsesdato22-09-2023
  • ISBN139781000958249
  • Forlag Crc Press
  • FormatPDF

Anmeldelser

Vær den første!

Log ind for at skrive en anmeldelse.

Findes i disse kategorier...