Machine Learning for Physics and Astronomy
- Format
- Bog, paperback
- Engelsk
Normalpris
Medlemspris
- Du sparer kr. 20,00
- Fri fragt
-
Leveringstid: 8-11 Hverdage (Sendes fra fjernlager) Forventet levering: 05-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
A hands-on introduction to machine learning and its applications to the physical sciences
As the size and complexity of data continue to grow exponentially across the physical sciences, machine learning is helping scientists to sift through and analyze this information while driving breathtaking advances in quantum physics, astronomy, cosmology, and beyond. This incisive textbook covers the basics of building, diagnosing, optimizing, and deploying machine learning methods to solve research problems in physics and astronomy, with an emphasis on critical thinking and the scientific method. Using a hands-on approach to learning, Machine Learning for Physics and Astronomy draws on real-world, publicly available data as well as examples taken directly from the frontiers of research, from identifying galaxy morphology from images to identifying the signature of standard model particles in simulations at the Large Hadron Collider.
Introduces readers to best practices in data-driven problem-solving, from preliminary data exploration and cleaning to selecting the best method for a given taskEach chapter is accompanied by Jupyter Notebook worksheets in Python that enable students to explore key conceptsIncludes a wealth of review questions and quizzesIdeal for advanced undergraduate and early graduate students in STEM disciplines such as physics, computer science, engineering, and applied mathematicsAccessible to self-learners with a basic knowledge of linear algebra and calculusSlides and assessment questions (available only to instructors)
Detaljer
- SprogEngelsk
- Sidetal280
- Udgivelsesdato15-08-2023
- ISBN139780691206417
- Forlag Princeton University Press
- FormatPaperback
Størrelse og vægt
10 cm
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Naturvidenskab: generelle emner
- Videnskabelig forskning
- Machine Learning for Physics and Astronomy
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Fysik
- Matematisk fysik
- Machine Learning for Physics and Astronomy
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Machine learning
- Machine Learning for Physics and Astronomy