Machine Learning for Engineers
- Format
- Bog, hardback
- Engelsk
Normalpris
Medlemspris
- Du sparer kr. 40,00
- Fri fragt
-
Leveringstid: 7-9 Hverdage (Sendes fra fjernlager) Forventet levering: 27-02-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
Part I Fundamentals
1.0 Introduction
1.1. Where machine learning can help engineers
1.2. Where machine learning cannot help engineers
1.3. Machine learning to correct idealized models
2. The Landscape of machine learning
2.1. Supervised learning
2.1.1. Regression
2.1.2. Classification
2.1.3. Time series
2.1.4. Reinforcement
2.2. Unsupervised Learning
2.3. Optimization
2.4. Bayesian statistics
2.5. Cross-validation
3. Linear Models
3.1. Linear regression
3.2. Logistic regression
3.3. Regularized regression
3.4. Case Study: Determining physical laws using regularized regression
4. Tree-Based Models
4.1. Decision Trees
4.2. Random Forests
4.3. BART
4.4. Case Study: Modeling an experiment using random forest models
5. Clustering data
5.1. Singular value decomposition
5.2. Case Study: SVD to standardize several time series
5.3. K-means
5.4. K-nearest neighbors
5.5. t-SNE
5.6. Case Study: The reflectance spectrum of different foliage
Part II Deep Neural Networks
6. Feed-Forward Neural Networks
6.1. Neurons
6.2. Dropout
6.3. Backpropagation
6.4. Initialization
6.5. Regression
6.6. Classification
6.7. Case Study: The strength of concrete as a function of age and ingredients
7. Convolutional Neural Networks
7.1. Convolutions
7.2. Pooling
7.3. Residual networks
7.4. Case Study: Finding volcanoes on Venus
8. Recurrent neural networks for time series data
8.1. Basic Recurrent neural networks
8.2. Long-term, Short-Term memory
8.3. Attention networks
8.4. Case Study: Predicting future system performance
Part III Advanced Topics in Machine Learning
9. Unsupervised Learning with Neural Networks
9.1. Auto-encoders
9.2. Boltzmann machines
9.3. Case study: Optimization using Inverse models
10. Reinforcement learning
10.1. Case study: controlling a mechanical gantry
11. Transfer learning
11.1. Case study: Transfer learning a simulation emulator for experimental measurements
Part IV Appendices
A. SciKit-Learn
B. Tensorflow
Detaljer
- SprogEngelsk
- Sidetal264
- Udgivelsesdato22-09-2021
- ISBN139783030703875
- Forlag Springer International Publishing
- MålgruppeFrom age 0
- FormatHardback
Størrelse og vægt
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Teknologi, ingeniørvidenskab og landbrug
- Maskinteknik og materialer
- Maskinteknik
- Machine Learning for Engineers
- Fagbøger
- Andre fagbøger
- Teknologi, ingeniørvidenskab og landbrug
- Energiteknik
- Atomkraft og atomkrafteknik
- Machine Learning for Engineers
- Fagbøger
- Andre fagbøger
- Teknologi, ingeniørvidenskab og landbrug
- Teknologi: generelle emner
- Ingeniørvidenskab: generelt
- Machine Learning for Engineers
- Fagbøger
- Andre fagbøger
- Teknologi, ingeniørvidenskab og landbrug
- Byggeteknik, landmåling og byggeri
- Machine Learning for Engineers