Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Learning and Generalisation

- With Applications to Neural Networks

  • Format
  • E-bog, PDF
  • Engelsk
Er ikke web-tilgængelig
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Normalpris

kr. 2.014,95

Medlemspris

kr. 1.949,95
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

Learning and Generalization provides a formal mathematical theory addressing intuitive questions of the type: How does a machine learn a concept on the basis of examples? How can a neural network, after training, correctly predict the outcome of a previously unseen input? How much training is required to achieve a given level of accuracy in the prediction? How can one identify the dynamical behaviour of a nonlinear control system by observing its input-output behaviour over a finite time?The second edition covers new areas including: support vector machines; fat-shattering dimensions and applications to neural network learning; learning with dependent samples generated by a beta-mixing process; connections between system identification and learning theory; probabilistic solution of 'intractable problems' in robust control and matrix theory using randomized algorithms.It also contains solutions to some of the open problems posed in the first edition, while adding new open problems.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Udgivelsesdato14-03-2013
  • ISBN139781447137481
  • Forlag Springer London
  • FormatPDF

Anmeldelser

Vær den første!

Log ind for at skrive en anmeldelse.

Findes i disse kategorier...