Latent Factor Analysis for High-dimensional and Sparse Matrices
- A particle swarm optimization-based approach
- Format
- E-bog, ePub
- Engelsk
- Indgår i serie
Normalpris
Medlemspris
Beskrivelse
Latent factor analysis models are an effective type of machine learning model for addressing high-dimensional and sparse matrices, which are encountered in many big-data-related industrial applications. The performance of a latent factor analysis model relies heavily on appropriate hyper-parameters. However, most hyper-parameters are data-dependent, and using grid-search to tune these hyper-parameters is truly laborious and expensive in computational terms. Hence, how to achieve efficient hyper-parameter adaptation for latent factor analysis models has become a significant question.This is the first book to focus on how particle swarm optimization can be incorporated into latent factor analysis for efficient hyper-parameter adaptation, an approach that offers high scalability in real-world industrial applications.The book will help students, researchers and engineers fully understand the basic methodologies of hyper-parameter adaptation via particle swarm optimization in latent factor analysis models. Further, it will enable them to conduct extensive research and experiments on the real-world applications of the content discussed.
Detaljer
- SprogEngelsk
- Udgivelsesdato15-11-2022
- ISBN139789811967030
- Forlag Springer Nature Singapore
- FormatePub
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Programmering / softwareudvikling
- Algoritmer og datastrukturer
- Latent Factor Analysis for High-dimensional and Sparse Matrices
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Machine learning
- Latent Factor Analysis for High-dimensional and Sparse Matrices
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Databaser
- Data mining
- Latent Factor Analysis for High-dimensional and Sparse Matrices