Kernel Methods and Machine Learning
- Format
- Bog, hardback
- Engelsk
Normalpris
Medlemspris
- Du sparer kr. 45,00
- Fri fragt
-
Leveringstid: 7-13 Hverdage (Sendes fra fjernlager) Forventet levering: 05-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
Offering a fundamental basis in kernel-based learning theory, this book covers both statistical and algebraic principles. It provides over 30 major theorems for kernel-based supervised and unsupervised learning models. The first of the theorems establishes a condition, arguably necessary and sufficient, for the kernelization of learning models. In addition, several other theorems are devoted to proving mathematical equivalence between seemingly unrelated models. With over 25 closed-form and iterative algorithms, the book provides a step-by-step guide to algorithmic procedures and analysing which factors to consider in tackling a given problem, enabling readers to improve specifically designed learning algorithms, build models for new applications and develop efficient techniques suitable for green machine learning technologies. Numerous real-world examples and over 200 problems, several of which are Matlab-based simulation exercises, make this an essential resource for graduate students and professionals in computer science, electrical and biomedical engineering. Solutions to problems are provided online for instructors.
Detaljer
- SprogEngelsk
- Sidetal572
- Udgivelsesdato17-04-2014
- ISBN139781107024960
- Forlag Cambridge University Press
- FormatHardback
Størrelse og vægt
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Computer vision
- Kernel Methods and Machine Learning
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Machine learning
- Kernel Methods and Machine Learning