Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Interpretability and Explainability in AI Using Python

  • Format
  • Bog, paperback
  • Engelsk
  • 272 sider

Normalpris

kr. 384,95

Medlemspris

kr. 349,95
  • Du sparer kr. 35,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

Demystify AI Decisions and Master Interpretability and Explainability Today Book Description

Interpretability in AI/ML refers to the ability to understand and explain how a model arrives at its predictions. It ensures that humans can follow the model's reasoning, making it easier to debug, validate, and trust. Interpretability and Explainability in AI Using Python takes you on a structured journey through interpretability and explainability techniques for both white-box and black-box models. You'll start with foundational concepts in interpretable machine learning, exploring different model types and their transparency levels. As you progress, you'll dive into post-hoc methods, feature effect analysis, anchors, and counterfactuals-powerful tools to decode complex models. The book also covers explainability in deep learning, including Neural Networks, Transformers, and Large Language Models (LLMs), equipping you with strategies to uncover decision-making patterns in AI systems. Through hands-on Python examples, you'll learn how to apply these techniques in real-world scenarios. By the end, you'll be well-versed in choosing the right interpretability methods, implementing them efficiently, and ensuring AI models align with ethical and regulatory standards-giving you a competitive edge in the evolving AI landscape. Table of Contents

1. Interpreting Interpretable Machine Learning

2. Model Types and Interpretability Techniques

3. Interpretability Taxonomy and Techniques

4. Feature Effects Analysis with Plots

5. Post-Hoc Methods

6. Anchors and Counterfactuals

7. Interpretability in Neural Networks

8. Explainable Neural Networks

9. Explainability in Transformers and Large Language Models

10. Explainability and Responsible AI

Index

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal272
  • Udgivelsesdato15-04-2025
  • ISBN139789348107572
  • Forlag Orange Education Pvt Ltd
  • MålgruppeFrom age 0
  • FormatPaperback
  • Udgave0
Størrelse og vægt
  • Vægt476 g
  • Dybde1,4 cm
  • coffee cup img
    10 cm
    book img
    19 cm
    23,4 cm

    Anmeldelser

    Vær den første!

    Log ind for at skrive en anmeldelse.

    Findes i disse kategorier...