- Format
- Bog, paperback
- Engelsk
- 350 sider
Normalpris
Medlemspris
- Du sparer kr. 60,00
- Fri fragt
-
Leveringstid: 4-7 Hverdage (Sendes fra fjernlager) Forventet levering: 26-02-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
With demand for scaling, real-time access, and other capabilities, businesses need to consider building operational machine learning pipelines. This practical guide helps your company bring data science to life for different real-world MLOps scenarios. Senior data scientists, MLOps engineers, and machine learning engineers will learn how to tackle challenges that prevent many businesses from moving ML models to production.Authors Yaron Haviv and Noah Gift take a production-first approach. Rather than beginning with the ML model, you'll learn how to design a continuous operational pipeline, while making sure that various components and practices can map into it. By automating as many components as possible, and making the process fast and repeatable, your pipeline can scale to match your organization's needs.You'll learn how to provide rapid business value while answering dynamic MLOps requirements. This book will help you:Learn the MLOps process, including its technological and business valueBuild and structure effective MLOps pipelinesEfficiently scale MLOps across your organizationExplore common MLOps use casesBuild MLOps pipelines for hybrid deployments, real-time predictions, and composite AILearn how to prepare for and adapt to the future of MLOpsEffectively use pre-trained models like HuggingFace and OpenAI to complement your MLOps strategy
Detaljer
- SprogEngelsk
- Sidetal350
- Udgivelsesdato19-12-2023
- ISBN139781098136581
- Forlag O'Reilly Media
- FormatPaperback
Størrelse og vægt
10 cm
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Naturligt sprog og maskinoversættelse
- Implementing MLOps in the Enterprise
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Computer vision
- Implementing MLOps in the Enterprise
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Neurale net og fuzzy systemer
- Implementing MLOps in the Enterprise
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Machine learning
- Implementing MLOps in the Enterprise
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Mønstergenkendelse
- Implementing MLOps in the Enterprise
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Matematisk datateori
- Implementing MLOps in the Enterprise
- Fagbøger
- Erhvervsliv, virksomheder og ledelse
- Operationsanalyse
- Implementing MLOps in the Enterprise