Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Hyperparameter Optimization in Machine Learning

- Make Your Machine Learning and Deep Learning Models More Efficient

  • Format
  • Bog, paperback
  • Engelsk

Normalpris

kr. 314,95

Medlemspris

kr. 294,95
  • Du sparer kr. 20,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

Dive into hyperparameter tuning of machine learning models and focus on what hyperparameters are and how they work. This book discusses different techniques of hyperparameters tuning, from the basics to advanced methods.This is a step-by-step guide to hyperparameter optimization, starting with what hyperparameters are and how they affect different aspects of machine learning models. It then goes through some basic (brute force) algorithms of hyperparameter optimization. Further, the author addresses the problem of time and memory constraints, using distributed optimization methods. Next you'll discuss Bayesian optimization for hyperparameter search, which learns from its previous history. The book discusses different frameworks, such as Hyperopt and Optuna, which implements sequential model-based global optimization (SMBO) algorithms. During these discussions, you'll focus on different aspects such as creation of search spaces and distributed optimization of these libraries. Hyperparameter Optimization in Machine Learning creates an understanding of how these algorithms work and how you can use them in real-life data science problems. The final chapter summaries the role of hyperparameter optimization in automated machine learning and ends with a tutorial to create your own AutoML script.Hyperparameter optimization is tedious task, so sit back and let these algorithms do your work. What You Will LearnDiscover how changes in hyperparameters affect the model's performance.Apply different hyperparameter tuning algorithms to data science problemsWork with Bayesian optimization methods to create efficient machine learning and deep learning modelsDistribute hyperparameter optimization using a cluster of machinesApproach automated machine learning using hyperparameter optimizationWho This Book Is For Professionals and students working with machine learning.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal145
  • Udgivelsesdato29-11-2020
  • ISBN139781484265789
  • Forlag Apress
  • FormatPaperback
Størrelse og vægt
  • Vægt454 g
  • Dybde1 cm
  • coffee cup img
    10 cm
    book img
    15,5 cm
    23,5 cm

    Anmeldelser

    Vær den første!

    Log ind for at skrive en anmeldelse.

    Findes i disse kategorier...