Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

From Nonparametric Regression to Statistical Inference for Non-Ergodic Diffusion Processes

  • Format
  • E-bog, ePub
  • Engelsk
Er ikke web-tilgængelig
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Normalpris

kr. 1.379,95

Medlemspris

kr. 1.319,95
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

This book is about copies-based nonparametric estimation of the drift function in stochastic differential equations (SDEs) driven by Brownian motion, a jump process, or fractional Brownian motion. While the estimators of the drift function in SDEs are classically computed from one long-time observation of the ergodic stationary solution, here the estimation framework – which is part of functional data analysis – involves multiple copies of the (non-stationary) solution observed over a short-time interval. Two kinds of nonparametric estimators are investigated for SDE models, first presented in the regression framework: the projection least squares estimator and the Nadaraya-Watson estimator. Adaptive procedures are provided for possible applications in statistical learning. Primarily intended for researchers in statistical inference for stochastic processes who are interested in the copies-based observation scheme, the book will also be useful for graduate and PhD students in probability and statistics, thanks to its multiple reminders of the requisite theory, especially the chapter on nonparametric regression.

Læs hele beskrivelsen
Detaljer

Anmeldelser

Vær den første!

Log ind for at skrive en anmeldelse.

Findes i disse kategorier...