Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Evolutionary Multi-Task Optimization

  • Format
  • Bog, hardback
  • Engelsk

Normalpris

kr. 1.324,95

Medlemspris

kr. 1.259,95
  • Du sparer kr. 65,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain's ability to generalize in optimization - particularly in population-based evolutionary algorithms - have received little attention to date. Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems, each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks. This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal232
  • Udgivelsesdato30-03-2023
  • ISBN139789811956492
  • Forlag Springer Verlag, Singapore
  • MålgruppeFrom age 0
  • FormatHardback
Størrelse og vægt
  • Vægt518 g
  • Dybde1,4 cm
  • coffee cup img
    10 cm
    book img
    15,5 cm
    23,5 cm

    Anmeldelser

    Vær den første!

    Log ind for at skrive en anmeldelse.

    Findes i disse kategorier...