Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Embedded Deep Learning

  • Format
  • Bog, paperback
  • Engelsk

Normalpris

kr. 744,95

Medlemspris

kr. 694,95
  • Du sparer kr. 50,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

This book covers algorithmic and hardware implementation techniques to enable embedded deep learning. The authors describe synergetic design approaches on the application-, algorithmic-, computer architecture-, and circuit-level that will help in achieving the goal of reducing the computational cost of deep learning algorithms. The impact of these techniques is displayed in four silicon prototypes for embedded deep learning.Gives a wide overview of a series of effective solutions for energy-efficient neural networks on battery constrained wearable devices;Discusses the optimization of neural networks for embedded deployment on all levels of the design hierarchy - applications, algorithms, hardware architectures, and circuits - supported by real silicon prototypes;Elaborates on how to design efficient Convolutional Neural Network processors, exploiting parallelism and data-reuse, sparse operations, and low-precision computations;Supports the introduced theory and design concepts by four real silicon prototypes. The physical realization's implementation and achieved performances are discussed elaborately to illustrated and highlight the introduced cross-layer design concepts.

Læs hele beskrivelsen
Detaljer
Størrelse og vægt
  • Vægt454 g
  • Dybde1,3 cm
  • coffee cup img
    10 cm
    book img
    15,5 cm
    23,5 cm

    Anmeldelser

    Vær den første!

    Log ind for at skrive en anmeldelse.

    Findes i disse kategorier...