Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Detecting Regime Change in Computational Finance

- Data Science, Machine Learning and Algorithmic Trading

  • Format
  • Bog, hardback
  • Engelsk

Normalpris

kr. 769,95

Medlemspris

kr. 719,95
  • Du sparer kr. 50,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

Based on interdisciplinary research into "Directional Change", a new data-driven approach to financial data analysis, Detecting Regime Change in Computational Finance: Data Science, Machine Learning and Algorithmic Trading applies machine learning to financial market monitoring and algorithmic trading. Directional Change is a new way of summarising price changes in the market. Instead of sampling prices at fixed intervals (such as daily closing in time series), it samples prices when the market changes direction ("zigzags"). By sampling data in a different way, this book lays out concepts which enable the extraction of information that other market participants may not be able to see. The book includes a Foreword by Richard Olsen and explores the following topics:



Data science: as an alternative to time series, price movements in a market can be summarised as directional changes

Machine learning for regime change detection: historical regime changes in a market can be discovered by a Hidden Markov Model

Regime characterisation: normal and abnormal regimes in historical data can be characterised using indicators defined under Directional Change

Market Monitoring: by using historical characteristics of normal and abnormal regimes, one can monitor the market to detect whether the market regime has changed

Algorithmic trading: regime tracking information can help us to design trading algorithmsIt will be of great interest to researchers in computational finance, machine learning and data science.

About the Authors

Jun Chen received his PhD in computational finance from the Centre for Computational Finance and Economic Agents, University of Essex in 2019.

Edward P K Tsang is an Emeritus Professor at the University of Essex, where he co-founded the Centre for Computational Finance and Economic Agents in 2002.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal164
  • Udgivelsesdato15-09-2020
  • ISBN139780367536282
  • Forlag Chapman & Hall/CRC
  • FormatHardback
Størrelse og vægt
  • Vægt400 g
  • coffee cup img
    10 cm
    book img
    15,6 cm
    23,4 cm

    Anmeldelser

    Vær den første!

    Log ind for at skrive en anmeldelse.

    Findes i disse kategorier...