Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems
- Format
- Bog, paperback
- Engelsk
Normalpris
Medlemspris
- Du sparer kr. 30,00
- Fri fragt
-
Leveringstid: 9-13 hverdage (Sendes fra fjernlager) Forventet levering: 05-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
This book investigates in detail the emerging deep learning (DL) technique in computational physics, assessing its promising potential to substitute conventional numerical solvers for calculating the fields in real-time. After good training, the proposed architecture can resolve both the forward computing and the inverse retrieve problems.
Pursuing a holistic perspective, the book includes the following areas. The first chapter discusses the basic DL frameworks. Then, the steady heat conduction problem is solved by the classical U-net in Chapter 2, involving both the passive and active cases. Afterwards, the sophisticated heat flux on a curved surface is reconstructed by the presented Conv-LSTM, exhibiting high accuracy and efficiency. Additionally, a physics-informed DL structure along with a nonlinear mapping module are employed to obtain the space/temperature/time-related thermal conductivity via the transient temperature in Chapter 4. Finally, in Chapter 5, a series of the latest advanced frameworks and the corresponding physics applications are introduced.
As deep learning techniques are experiencing vigorous development in computational physics, more people desire related reading materials. This book is intended for graduate students, professional practitioners, and researchers who are interested in DL for computational physics.
Detaljer
- SprogEngelsk
- Sidetal180
- Udgivelsesdato30-01-2025
- ISBN139781032503035
- Forlag Crc Press
- FormatPaperback
Størrelse og vægt
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Regning og matematisk analyse
- Numerisk analyse
- Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Anvendt matematik
- Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Fysik
- Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems
- Fagbøger
- Andre fagbøger
- Teknologi, ingeniørvidenskab og landbrug
- Elektronik og kommunikationsteknik
- Elektroteknik
- Deep Learning-Based Forward Modeling and Inversion Techniques for Computational Physics Problems