- Format
- Bog, hardback
- Engelsk
- Indgår i serie
Normalpris
Medlemspris
- Du sparer kr. 40,00
- Fri fragt
-
Leveringstid: 4-7 Hverdage (Sendes fra fjernlager) Forventet levering: 27-02-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter.
This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.
Detaljer
- SprogEngelsk
- Sidetal760
- Udgivelsesdato14-02-2020
- ISBN139783030367206
- Forlag Springer Nature Switzerland AG
- FormatHardback
Størrelse og vægt
10 cm
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Anvendt matematik
- Matematisk modellering
- Deep Learning Architectures
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informatik
- Kunstig intelligens
- Machine learning
- Deep Learning Architectures