- Format
- Bog, paperback
- Engelsk
- 250 sider
Normalpris
Medlemspris
- Du sparer kr. 55,00
- Fri fragt
-
Leveringstid: 4-7 Hverdage (Sendes fra fjernlager) Forventet levering: 24-02-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "big themes" of the discipline-machine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one.Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and a qualified data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create value and train data scientists from different companies and industries.With this book, you will:Understand how data science creates valueDeliver compelling narratives to sell your data science projectBuild a business case using unit economics principlesCreate new features for a ML model using storytellingLearn how to decompose KPIsPerform growth decompositions to find root causes for changes in a metricDaniel Vaughan is head of data at Clip, the leading paytech company in Mexico. He's the author of Analytical Skills for AI and Data Science (O'Reilly).
Detaljer
- SprogEngelsk
- Sidetal250
- Udgivelsesdato17-11-2023
- ISBN139781098146474
- Forlag O'Reilly Media
- FormatPaperback
Størrelse og vægt
Anmeldelser
Vær den første!
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Matematik og naturvidenskab
- Matematik
- Regning og matematisk analyse
- Kompleks analyse, komplekse variabler
- Data Science: The Hard Parts
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Programmering / softwareudvikling
- Algoritmer og datastrukturer
- Data Science: The Hard Parts