Data Quality and Trust in Big Data
- 5th International Workshop, QUAT 2018, Held in Conjunction with WISE 2018, Dubai, UAE, November 12–15, 2018, Revised Selected Papers
Forfatter: info mangler
- Format
- Bog, paperback
- Engelsk
Normalpris
kr. 414,95
Medlemspris
kr. 389,95
- Du sparer kr. 25,00
- Fri fragt
-
Leveringstid: 2-3 uger (Sendes fra fjernlager) Forventet levering: 13-03-2026
- Kan pakkes ind og sendes som gave
Beskrivelse
This book constitutes revised selected papers from the International Workshop on Data Quality and Trust in Big Data, QUAT 2018, which was held in conjunction with the International Conference on Web Information Systems Engineering, WISE 2018, in Dubai, UAE, in November 2018.
The 9 papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with novel ideas and solutions related to the problems of exploring, assessing, monitoring, improving, and maintaining the quality of data and trust for Big Data.
Detaljer
- SprogEngelsk
- Sidetal137
- Udgivelsesdato25-04-2019
- ISBN139783030191429
- Forlag Springer Nature Switzerland AG
- FormatPaperback
Størrelse og vægt
10 cm
Anmeldelser
Vær den første!
Log ind for at skrive en anmeldelse.
Findes i disse kategorier...
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Informationsteknologi: generelle emner
- Data Quality and Trust in Big Data
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Databaser
- Datafangst og dataanalyse
- Data Quality and Trust in Big Data
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Databaser
- Data warehouse
- Data Quality and Trust in Big Data
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Databaser
- Informationssøgning og informationsgenfinding
- Data Quality and Trust in Big Data
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Datakommunikation og computernetværk
- Systemadministration
- Data Quality and Trust in Big Data
- Fagbøger
- Andre fagbøger
- Data- og informationsteknologi
- Anvendt databehandling
- Data Quality and Trust in Big Data