Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur
Studiebog
Paperback version af Data Compression for Data Mining Algorithms af Xiaochun Wang

Udkommer d. 01.05.2026

Data Compression for Data Mining Algorithms

Bog
  • Format
  • Bog, paperback
  • Engelsk

Normalpris

kr. 1.094,95

Medlemspris

kr. 1.034,95
  • Du sparer kr. 60,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

Data Compression for Data Mining Algorithms tackles the important problems in the design of more efficient data mining algorithms by way of data compression techniques and provides the first systematic and comprehensive description of the relationships between data compression mechanisms and the computations involved in data mining algorithms. Data mining algorithms are powerful analytical techniques used across various disciplines, including business, engineering, and science. However, in the big data era, tasks such as association rule mining and classification often require multiple scans of databases, while clustering and outlier detection methods typically depend on Euclidean distance for similarity measures, leading to high computational costs. Data Compression for Data Mining Algorithms addresses these challenges by focusing on the scalarization of data mining algorithms, leveraging data compression techniques to reduce dataset sizes and applying information theory principles to minimize computations involved in tasks such as feature selection and similarity computation. The book features the latest developments in both lossless and lossy data compression methods and provides a comprehensive exposition of data compression methods for data mining algorithm design from multiple points of view. Key discussions include Huffman coding, scalar and vector quantization, transforms, subbands, wavelet-based compression for scalable algorithms, and the role of neural networks, particularly deep learning, in feature selection and dimensionality reduction. The book’s contents are well-balanced for both theoretical analysis and real-world applications, and the chapters are well organized to compose a solid overview of the data compression techniques for data mining. To provide the reader with a more complete understanding of the material, projects and problems solved with Python are interspersed throughout the text.

Læs hele beskrivelsen
Detaljer
Størrelse og vægt
  • Vægt450 g
  • coffee cup img
    10 cm
    book img
    19,1 cm
    23,5 cm

    Anmeldelser

    Vær den første!

    Log ind for at skrive en anmeldelse.

    Findes i disse kategorier...