Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Bayesian Machine Learning in Geotechnical Site Characterization

  • Format
  • E-bog, ePub
  • Engelsk
Er ikke web-tilgængelig
E-bogen er DRM-beskyttet og kræver et særligt læseprogram

Normalpris

kr. 2.209,95

Medlemspris

kr. 2.149,95
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

Bayesian data analysis and modelling linked with machine learning offers a new tool for handling geotechnical data. This book presents recent advancements made by the author in the area of probabilistic geotechnical site characterization.Two types of correlation play central roles in geotechnical site characterization: cross-correlation among soil properties and spatial-correlation in the underground space. The book starts with the introduction of Bayesian notion of probability 'degree of belief', showing that well-known probability axioms can be obtained by Boolean logic and the definition of plausibility function without the use of the notion 'relative frequency'. It then reviews probability theories and useful probability models for cross-correlation and spatial correlation. Methods for Bayesian parameter estimation and prediction are also presented, and the use of these methods demonstrated with geotechnical site characterization examples.Bayesian Machine Learning in Geotechnical Site Characterization suits consulting engineers and graduate students in the area.

Læs hele beskrivelsen
Detaljer
  • SprogEngelsk
  • Sidetal188
  • Udgivelsesdato07-08-2024
  • ISBN139781040097823
  • Forlag Crc Press
  • FormatePub

Anmeldelser

Vær den første!

Log ind for at skrive en anmeldelse.

Findes i disse kategorier...