Over 10 mio. titler Fri fragt ved køb over 499,- Hurtig levering 30 dages retur

Balanced Silverman Games on General Discrete Sets

Normalpris

kr. 414,95

Medlemspris

kr. 389,95
  • Du sparer kr. 25,00
  • Fri fragt
Som medlem af Saxo Premium 20 timer køber du til medlemspris, får fri fragt og 20 timers streaming/md. i Saxo-appen. De første 7 dage er gratis for nye medlemmer, derefter koster det 99,-/md. og kan altid opsiges. Løbende medlemskab, der forudsætter betaling med kreditkort. Fortrydelsesret i medfør af Forbrugeraftaleloven. Mindstepris 0 kr. Læs mere

Beskrivelse

A Silverman game is a two-person zero-sum game defined in terms of two sets S I and S II of positive numbers, and two parameters, the threshold T 1 and the penalty 0. Players I and II independently choose numbers from S I and S II, respectively. the igher number wins 1, unless it is at least T times as large as the other, in which case it loses v. Equal numbers tie. Such a game might be used to model various bidding or spending situations in which within some bounds the higher bidder or bigger spender wins, but loses if it is overdone. such situations may include spending on armaments, advertising spending or sealed bids in an auction. Previous work has dealt mianly with special cases. In this work recent progress for arbitrary discrete sets S I and S II is presented. Under quite general conditions, these games reduce to finite matrix games. A large class of games are completely determined by the diagonal or the matrix, and it is shown how the great majority of these appear to have unique optimal strategies. The work is accessible to all who are familiar with basic noncooperative game theory.

Læs hele beskrivelsen
Detaljer
Størrelse og vægt
coffee cup img
10 cm
book img
17 cm
24,2 cm

Anmeldelser

Vær den første!

Log ind for at skrive en anmeldelse.

Findes i disse kategorier...